Biometry, body condition, reproductive status and molt of Tyrannus s. savana in central Argentina

Authors

  • María Emilia Rebollo Colaboratorio de Biodiversidad, Ecología y Conservación (ColBEC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa. Campo de enseñanza FCEyN–UNLPam, Ruta 35, km 334, Pabellón Sur, Santa Rosa, 6300, Argentina. Instituto de las Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), CONICET–Universidad Nacional de La Pampa. Mendoza 109, Santa Rosa, 6300, Argentina
  • Alex E. Jahn Environmental Resilience Institute, Indiana University. 717 E 8th Street Bloomington, Indiana, 47408, USA
  • Joaquín Cereghetti Santa Rosa, Argentina
  • Lorenzo Pérez-Rodríguez Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC, UCLM, JCCM). Ronda de Toledo 12, Ciudad Real, 13005, España
  • José Hernán Sarasola Instituto de las Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), CONICET–Universidad Nacional de La Pampa. Mendoza 109, Santa Rosa, 6300, Argentina, Centro para el Estudio y Conservación de las Aves Rapaces en Argentina (CECARA), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa. Avda. Uruguay 151, Santa Rosa, 6300, Argentina

DOI:

https://doi.org/10.59517/oc.e525

Keywords:

age, Espinal phytogeographic province, fat, mass, sex

Abstract

Body condition may influence different phenological processes that, at the same time, may be performed differentially according to individual sex and age. We studied the biometry, body condition, breeding stage and feather molt of the Fork-tailed flycatcher (Tyrannus s. savana), a Neotropical austral migrant. Between October and February (2015-2018), we captured individual flycatchers in La Pampa, Argentina, which were banded and measured in a standardized fashion. We found larger wing chords and weights than previous studies, and tarsus and culmen lengths were reported for the first time. As is true for most passerines, females were smaller than males, both in nestling weight and in adult wing chord and tail length. During the breeding season, fat levels were mostly low, pectoral muscle scores were medium, brood patch development was high and cloacal protuberance development was low, as reported for most tyrant flycatchers. Additionally, active feather molt was mostly low, as has been previously documented, and wear of the remiges and rectrices was moderate. Also, these characteristics did not show temporal changes, except for the variation of fat levels and wear of the remiges and rectrices between breeding seasons, and a decrease in weight and greater brood patch development as the reproductive seasons progressed. Descriptions such as this are important because there exists a large gap in our understanding of the basic natural history of many Neotropical birds, which hinders our ability to address the alarming loss of biodiversity in the region.

Downloads

Download data is not yet available.

References

Alderete, C. & P. Capllonch. 2010. Pesos de aves Suboscines de Argentina. Nótulas faunísticas (Segunda serie) 58: 1–5.

Andersson, N., M. Piha, K. Meller, K. Välimäki & A. Lehikoinen. 2018. Variation in body condition of songbirds during breeding season in relation to sex, migration strategy and weather. Ornis Fennica 95: 70–81.

Barton, K. 2018. MuMIn: Multi-Model Inference. R package version 1421.

BirdLife International. 2014. Migratory birds and flyways (URL: www.birdlife.org/worldwide/programmes/migratory-birds-and-flyways). 15 de Junio de 2014.

Brown, M. E. 1996. Assesing body condition in birds. Current Ornithology 13: 67–135.

Butler, J. M. 2009. DNA Extraction from forensic samples using chelex protocol. Cold Spring Harb Protocols 4: 18–21.

Cabrera, A. L. & A. Willink. 1973. Biogeografía de América. Programa Regional de Desarrollo Científico y Tecnológico, Departamento de Asuntos Científicos, Secretaría General de la Organización de los Estados Americanos, Washington, USA.

Carey, C. 1996. Avian energetics and nutritional ecology. Chapman & Hall, New York, 543 pp.

Chambers, J. M. 1992. Linear models. Págs. 95–144 en: Chambers, J. M. & T. J. Hastie (eds.). Statistical Models in S. Chapman & Hall/CRC, Nueva York, USA.

Chesser, R. T. 1994. Migration in South America: an overview of the austral system. Bird Conservation International 4: 91–107.

Chmura, H. E., H. M. Kharouba, J. Ashander, S. M. Ehlman, E. B. Rivest & L. H. Yang. 2019. The mechanisms of phenology: the patterns and processes of phenological shifts. Ecological Monographs 89: e01337.

Cody, M. L. 1971. Ecological aspects of reproduction. Págs. 461–512 en: Farner, D. S. & J. R. King (eds.). Avian Biology, Academic Press, Nueva York, USA.

Crawley, M. J. 2015. Statistics: An introduction using R. Imperial College, London, 339 pp.

Cueto, V. R. & A. E. Jahn. 2008. Sobre la necesidad de tener un nombre estandarizado para las aves que migran dentro de América del Sur. El Hornero 23: 1–4.

Cueto, V. R., J. Lopez de Casenave & L. Marone. 2008. Neotropical austral migrant landbirds: Population trends and habitat use in the central Monte desert, Argentina. The Condor 110: 70–79.

Dennis, P. 2003. Sensitivity of upland arthropod diversity to livestock grazing, vegetation structure and landform. Journal of Food Agriculture and Environment 1: 301–307.

Ellegren, H. 1996. First gene on the avian W chromosome (CHD) provides a tag for universal sexing of non-ratite birds. Proceedings: Biological Sciences 263: 1635–1641.

Everitt, B. S. & T. Hothorn. 2010. A Handbook of Statistical Analyses Using R. CRC press, Nueva York, USA.

Faaborg, J., R. T. Holmes, D. Anders, K. L. Bildstein, K. M. Dugger, S. Gauthreaux, P. Heglund, K. A. Hobson, A. E. Jahn, D. H. Johnson, S. C. Latta, D. J. Levey, P. P. Marra, C. L. Merkord, E. Nol, S. I. Rothstein, T. W. Sherry, T. S. Sillett, F. R. Thompson & N. Warnock. 2010. Conserving migratory landbirds in the New World: Do we know enough? Ecological Applications 20: 398–418.

Gardner, J. L., A. Peters, M. R. Kearney, L. Joseph & R. Heinsohn. 2011. Declining body size: a third universal response to warming? Trends in Ecology and Evolution 26: 285–291.

Griffiths, R., M. C. Double, K. Orr & R. J. G. Dawson. 1998. DNA test to sex most birds. Molecular Ecology 7: 71–1075.

Harper, D. G.1999. Feather mites, pectoral muscle condition, wing length and plumage coloration of passerines. Animal Behaviour 58: 553–562.

Hothorn, T., F. Bretz & P. Westfall. 2008. Simultaneous inference in general parametric models. Biometrical Journal 50: 346–363.

Jahn, A.E., D.J. Levey, A.M. Mamani, M. Saldias, A. Alcoba, M.J. Ledezma, B. Flores, J.Q. Vidoz & F. Hilarion. 2010. Seasonal differences in rainfall, food availability, and the foraging behavior of Tropical Kingbirds in the southern Amazon Basin. Journal of Field Ornithology 81: 340–348.

Jahn, A. E, D. J. Levey, V. R. Cueto, J. P. Ledezma, D. T. Tuero, J. W. Fox & D. Masson. 2013. Long-distance bird migration within South America revealed by light-level geolocators. The Auk 130: 223–229.

Jahn, A. E. & D. T. Tuero. 2013. Fork-tailed Flycatcher (Tyrannus savana) Neotropical Birds Online (URL: https://neotropicalbirdscornelledu/Species-Account/nb/species/fotfly/overview). 20 de mayo de 2019.

Jahn, A. E., J. I. Giraldo, M. MacPherson, D. T. Tuero, J. H. Sarasola, J. Cereghetti, D. Masson & M. V. Morales. 2016. Demographic variation in timing and intensity of feather molt in migratory Fork-tailed Flycatchers (Tyrannus s savana). Journal of Field Ornithology 87: 143–154.

Jahn, A. E., V. Bejarano, M. B. Guzmán, L. M. Brown, I. C. C. Provinciato, J. Cereghetti, V. R. Cueto, J. I. Giraldo, V. Gómez-Bahamón, M. S. Husak & H. K. LePage. 2017. Molting while breeding? Lessons from new world Tyrannus flycatchers. Journal of Ornithology 158(4): 1061–1072.

Jahn, A. E., V. R. Cueto, C. S. Fontana, A. C. Guaraldo, D. J. Levey, P. P. Marra & T. B. Ryder. 2020. Bird migration within the Neotropics. The Auk 137: 1–23.

Johnson, E. I. & J.D. Wolfe. 2018. Molt in Neotropical birds life history and aging criteria. CRC Press, Nueva York, USA.

Kitaysky, A.S., J.C. Wingfield Y J.F. Piatt. 1999. Dynamics of food availability, body condition and physiological stress response in breeding Black-legged Kittiwakes. Functional Ecology 13: 577–584.

Kovács, S., P. Fehérvári, K. Nagy, A. Harnos & T. Csörgó. 2012. Changes in migration phenology and biometrical traits of Reed, Marsh and Sedge Warblers. Central European Journal of Biology 7: 115–125.

Labocha, M. K. & J. P. Hayes. 2012. Morphometric indices of body condition in birds: a review. Journal of Ornithology 153: 1–22.

Lack, D. 1968. Ecological adaptations for breeding in birds. Methuen, London, UK.

Leith, H. L. 1974. Phenology and seasonality modeling. Springer, Nueva York, USA.

MacDougall, A. S., K. S. Mccann, G. Gellner & R. Turkington. 2013. Diversity loss with persistent human disturbance increases vulnerability to ecosystem collapse. Nature 494: 86–89.

Machado-Filho, R. N., G. M. Balsamão & M. Â. Marini. 2010. Seasonal differences in immune profiles and body conditions of migratory and permanent resident Neotropical flycatchers. The Condor 112: 579–590.

Martin, K. 1995. Patterns and mechanisms for age-dependent reproduction and survival in birds. American Zoologist 35: 340–348.

Martin, T. E. 1996. Life history evolution in tropical and South temperate birds: What do we really know? Journal of Avian Biology 27: 263–272.

Martin, T. E. & D. M. Finch. 1995. Ecology and management of Neotropical migratory birds: A synthesis and review of critical issues. Oxford, Nueva York, USA.

Mason, P. 1985. The nesting biology of some passerines of Buenos Aires, Argentina. Neotropical Ornithology 36: 954–972.

Mezquida, E. T. 2002. Nidificación de ocho especies de Tyrannidae en la Reserva de Ñacuñán, Mendoza, Argentina. El Hornero 17: 31–40.

Milenkaya, O., D. H. Catlin, S. Legge & J. R. Walters. 2015. Body condition indices predict reproductive success but not survival in a sedentary, tropical bird. PLoS ONE 10: e0136582.

Milenkaya, O., N. Weinstein, S. Legge & J. R. Walters. 2013. Variation in body condition indices of crimson finches by sex, breeding stage, age, time of day, and year. Conservation Physiology 1: 1–14.

Mobley, J. & E. F. J. Garcia. 2015. Fork-tailed Flycatcher (Tyrannus savana). Pág. 425 en: del Hoyo J., A. Elliot, J. Sargatal, D. A. Christie & E. de Juana (eds.). Handbook of the birds of the world alive. Lynx Edicions, Barcelona, España.

Møller, A. P. & F. De Lope. 1999. Senescence in a short-lived migratory bird: age, dependent morphology, migration, reproduction and parasitism. Journal of Animal Ecology 68: 163–171.

Mulvihill, R. S., Leberman R. C. & A. J. Leppold. 2004. Relationships among body mass, fat, wing length, age and sex for 170 species of birds banded at Powdermill Nature Reserve. Eastern Bird Banding Association, Rector, USA.

NABC. 2003. Manual para anillar Paseriformes y cuasi- Paseriformes del anillador de Norteamérica. North American Banding Council, Point Reyes Station, USA.

Newton, I. 2007. The migration ecology of birds. Academic press, Elsevier, London, 984 pp.

Owen, J. C. 2011. Collecting, processing, and storing avian blood: a review. Journal of Field Ornithology 82: 339–354.

Oyarzabal, M., J. Clavijo, L. Oakley, F. Biganzoli, P. Tognetti, I. Barberis, H. M. Maturo, R. Aragón, P. I. Campanello, D. Prado, M. Osterheld & R. J. C. León. 2018. Unidades de vegetación de la Argentina. Ecología Austral 28: 40–63.

Peig, J. & A. J. Green. 2009. New perspectives for estimating body condition from mass / length data: the scaled mass index as an alternative method. Oikos 118: 1883–1891.

Peig, J. & A. J. Green. 2010. The paradigm of body condition: a critical reappraisal of current methods based on mass and length. Functional Ecology 24: 1323–1332.

de la Peña, M. R. 2016. Aves argentinas: descripción, comportamiento, reproducción y distribución. Comunicaciones del Museo Provincial de Ciencias Naturales “Florentino Ameghino” (Nueva Serie) 21: 1–633.

Pereira, P. & M. Â. Marini. 2015. An intratropical migratory passerine can quickly improve its physiological condition during post migration, reproduction and departure phases on the breeding site in the Cerrado. Revista Brasileira de Ornitologia 23: 428–436.

Pérez-Arteaga, A., C. C. Martínez-Chávez & J. Salgado-Ortiz. 2019. Body condition of the Upland sandpiper (Bartramia longicauda) en route Through central México. Ornitología Neotropical 30: 73–78.

Pyle, P. 1997. Identification Guide to North American Birds, Part I: Columbidae to Ploceidae. Slate Creek Press, Point Reyes Station, USA.

Pyle, P., A. Engilis & D. A. Kelt. 2015. Manual para estimar edad y sexo en aves del Parque Nacional Bosque Fray Jorge y Chile central, con notas sobre rangos de distribución y estación reproductiva. Occasional Papers of The Museum of Natural Science, Louisiana State University, Baton Rouge, USA.

Ralph, C.J., G. R. Geupel, P. Pyle, T. E. Martin & D. F. DeSante. 1993. Handbook of field methods for monitoring landbirds. Pacific Southwest Research Station, Albany, USA.

R Core Team. 2017. R: A language and environment for statistical computing. Versión 3.5.1.

Rebollo, M. E., A. E. Jahn, J. Cereghetti, S. A. Pereyra Fernandez & J. H. Sarasola. 2020. Nest-site selection and breeding success of two neotropical austral migrant birds in a semiarid forest: A comparison of sites with and without livestock. Journal of Arid Environments 177: 104121.

Redfern, C. P. F. 2010. Brood‐patch development and female body mass in passerines. Ringing & Migration 25(1): 33–41.

Rioux Paquette, S., F.Pelletier, D. Garant & M. Belisle. 2014. Severe recent decrease of adult body mass in a declining insectivorous bird population. Proceedings of the Royal Society Biological Sciences 281: 20140649.

Rosińska, K. 2007. Biometrics and morphology variation within sex-age groups of Robins (Erithacus rubecula) migrating through the Polish Baltic Coast. The Ring 29: 91–106.

Salvador, S. A. 2013. Biología de la tijereta (Tyrannus s. savana) en el Departamento General San Martín, Córdoba, Argentina. Historia Natural (Tercera Serie) 3: 47–59.

Stewart, R. L. M., C. M. Francis & C. Massey. 2002. Age-related differential timing of spring migration within sexes in passerines. The Wilson Bulletin 114: 264–271.

Tuero, D. T., A. E. Jahn & M. MacPherson. 2019. Bird migration in South America: the fork-tailed flycatcher (Tyrannus savana) as a case study. Págs. 133–154 en: Reboreda, J. C., V. D. Fiorini & D. T. Tuero (eds.). Behavioral Ecology of Neotropical Birds. Springer, Cham, Suiza.

Tuero, D. T., A. E. Jahn, M. S. Husak, D. V. Roeder, D. A. Masson, F. M. Pucheta, T. J. Michels, A. Quickle, J. Q. Vidoz, M. Domínguez & J. C. Reboreda. 2018. Ecological determinants of Tyrannus flycatcher nestling growth at north-and south-temperate latitudes. The Auk: Ornithological Advances 135 (3): 439–448.

Van Buskirk, J., R. S. Mulvihill & R. C. Leberman. 2010. Declining body sizes in North American birds associated with climate change. Oikos 119: 1047–1055.

Vitousek, P. M., H. A. Mooney, J. Lubchenco & J. M. Melillo. 1997. Human domination of earth’s ecosystems. Science 277: 494–499.

Weeks, B.C., D.E. Willard, M. Zimova, A.A. Ellis, M.L. Witynski, M. Hennen & B.M. Winger. 2020. Shared morphological consequences of global warming in North American migratory birds. Ecology Letters 23; 316–325.

Zuur, A. F., E. N.Ieno, N. J.Walker, A. A. Saveliev & G. M. Smith. 2009. Mixed effects models and extensions in ecology with R. Springer, Nueva York, USA.

Downloads

Published

2021-11-30

Issue

Section

Research Articles

How to Cite

Biometry, body condition, reproductive status and molt of Tyrannus s. savana in central Argentina. (2021). Ornitología Colombiana, 20, 13-25. https://doi.org/10.59517/oc.e525